Главная страница
Контакты

    Басты бет


«компьютер жүйелерінің СӘулеті»

жүктеу 0.69 Mb.



жүктеу 0.69 Mb.
бет2/9
Дата17.03.2017
өлшемі0.69 Mb.

«компьютер жүйелерінің СӘулеті»


1   2   3   4   5   6   7   8   9

2. Дәрістер


Дәріс сабағының құрылымы:

1-модуль

1 дәріс. Кіріспе

Дәріс жоспары:


1. Курс мақсаты мен міндеті.
Мақсат - белгілі бір межеге қол жеткізуге бағытталған әрекеттің ой-санадағы көрінісі. Мақсат ойлау нәтижесінде болашақты алдын ала болжау арқылы туатын мұрат, ішкі қозғаушы күшті білдіреді. Мақсатқа жету үшін әр түрлі іс-әрекеттер мен қимылдар жасалады.

2. Курс құрылымы мен оның басқа пәндермен байланысы.

3. Есептеу техникасының (ЕТ) даму тарихы. ЭЕМ буындары.

Дәрістің қысқаша мазмұны:


1. Курс мақсаты мен міндеті.

«Компьютер жүйелерінің сәулеті» пәні ақпаратты өңдеудің қазіргі жүйелерінің облысында студенттерге білім беруге және ақпаратты өңдеу жүйелерін жобалау кезінде архитектуралық шешімдер таңдауға негізделген.

«Компьютер жүйелерінің сәулеті» курсында компьютер жүйесі сәулетінің жалпы сұрақтары, құрылу принциптері мен құрылымы және ЭЕМ негізгі құрылғыларының жұмысы, ақпаратты өңдеу мен тасымалдау принциптері және т.б.

Қағида немесе принцип (лат. principim – принцип; негіз, алғы бастама) - белгілі білім жүйесінің түп-негізі, алғы бастамасы, абстрактылы түрдегі ең қысқа жалпылама мазмұны. Ғылыми танымда идея, теория, әдіс сияқты таным түрлерімен өзара байланыста тұжырымдалады.
қарастырылады.

«Компьютер жүйелерінің сәулеті» курсын оқытудың міндеті мыналарды меңгеру болып табылады:



  • қазіргі ЭЕМ мен компьютерлік жүйелердің сәулеттік ерекшеліктерін;

  • ЭЕМ функционалды тораптары мен құрылғыларын жобалаудың негіздерін;

  • есептеу кешендерін ұйымдастыру негіздерін.

«Компьютер жүйелерінің сәулеті» пәні қазіргі ЭЕМ жұмысының сәулетін, құрылымын және принциптерін қарастыруды қамтамасыз етеді.

2. Курс құрылымы мен оның басқа пәндермен байланысы



Дәрістік материал келесі тақырыптардан тұрады:

1 тақырып. Кіріспе.

2 тақырып. ЭЕМ ұйымдастыру негіздері.

1. ЭЕМ сәулеті.

2. ЭЕМ-нің ақпараттық-логикалық негізі.

3 тақырып. ЭЕМ есте сақтау құрылғылары (ЕСҚ).

Блок тақырыбы (Заголовок блока; block header) - блоктың басында орналасып, ол жайлы мәліметтер беретін және операциялық жүйеде қолданылатын арнайы жазба. Мысалы, блок тақырыбында оған кіретін логикалық жазбалар саны көрсетілуі мүмкін.
Есте сақтау - жадында түту. Ес үрдістерінің бірі, жаңадан түсіп жатқан ақпаратты жадыға енгізуді белгілейді. Есте сақтау динамикасын психодиагностикалау әдістемесі - адамның есте сақтауының динамикалық сипаттарын анықтауға көмектесетін психодиагностикалық әдістемелер, көбіне бұл әдістемелер адам қаншалықты тез есте сақтайтынын және ақпаратты өндеуін анықтайды.

1. Жадыны ұйымдастыру.

2. Статикалық жедел ЕСҚ (SRAM).

3. Динамикалық жедел ЕСҚ (DRAM).

4. КЭШ-жады.

5. Тұрақты ЕСҚ (ПЗУ).



4 тақырып. ЭЕМ санағыштары.

1. Микропроцессор сәулеті, құрылымы мен міндеті (МП).

2. Процессордың құрылымы мен оның функционалдануы.

3. ЭЕМ ұйымдастырудың машиналық деңгейі.

Микропроцессор - жүйелік тақтаның ең маңызды құраласы, ол деректерді тікелей өңдейді, атап айтқанда, бөлектелген деректермен арифметикалық және логикалық амалдарды орындайды. Микропроцессор - бір немесе бірнеше үлкен интегралды кестеде орындалған, берілісті өңдейтін бағдарламалық құрылғы; көліктердің автоматты басқару агрегатында қолданылады.
ДЕҢГЕЙ (Уровень; layer, level) - абстракциялы дерексіздік дәреже; иерархиялық құрылым қабаты; осы желімен орындалатын белгілі бір мәселелер кешенін сипаттайтын есептеуіш желі қүрылымының логикалық қабаты,

4. ЭЕМ-ді ұйымдастырудың микропрограммалық деңгейі.

5. ЭЕМ-ді ұйымдастырудың жүйелік деңгейі.



5 тақырып. Енгізу-шығаруды ұйымдастыру.

1. ЭЕМ интерфейстерінің жүйесі: белгіленуі мен құрамы.

2. Интерфейстерді құрудың негізгі принциптері. Интерфейс сипаттамалары.

3. Интерфейстерді ұйымдастыру принциптері.

4. ЭЕМ құрылғылары арасында ақпарат алмасу әдістері.

Әдіс , метод (гр. 'μέθοδος',methodes зерттеу не тану жолы, бір нәрсеге жетудің жолы) - көздеген мақсатқа жетудің тәсілі, тәртіпке келтірген қызмет жүйесі. Әдіс философияда зерттелетін нәрсенің ойша нұсқасын жасау үшін қажетті таным құралы болып табылады.

5. Ішкі машиналы жүйелік интерфейс.



6 тақырып. Есептеу жүйелері (ЕЖ).

1. ЕЖ түсінігі мен дамуы.

2. Есептеу жүйелерін құрудың негізгі принциптері.

3. Есептеу жүйелерінің классификациясы.

4. Есептеу жүйелерінің сәулеті.

5. Көппроцессорлы есептеу жүйелері.

6. Есептеу жүйелерін кешендеу.

7. Есептеу жүйелерінің типтік құрылымы.

8. Есептеу жүйелерін функционалдауды ұйымдастыру.

3. Есептеу техникасының (ЕТ) даму тарихы. ЭЕМ буындары.

Есептеу техникасының (ЕТ) дамуы 3 облыстағы табыстарымен сипатталады:


  1. Өндіріс технологиясында ЕТ элементарлы базасы ретінде, сонымен қатар машиналардың өзі.

  2. ЕМ ұйымдастыру принциптерінде.

  3. математикалық және программалық қамтаманы құрастыруда.

Кез келген ЕМ ақпаратпен алгоритмдердің бірнеше кластарын өндіруді қамтамасыз ететін программалық-аппараттық кешендер ретінде қарастырылуы керек.

ЕМ жұмыс істеу процесінде барлық оның компоненттері қандайда бір түрде бір-бірімен қатынасады. Мұндай қатынастың деңгейлері әр түрлі болуы мүмкін:



  1. Төменгі деңгей: электрлі импульстер деңгейінде.

  2. Жоғарғы деңгей: программалық модуль деңгейінде ЕМ тораптарының өзара қатынасы.

  3. Әрбір жеке тораптың функционалды деңгейі: программалық-аппараттыө әдістермен функция және оларды өндіру.

Сәулет болып пайдаланушы көзқарасымен ЕМ құрамы мен сипатының жиынтығы түсініледі.
Пайдаланушы (Пользователь; user, subscriber) - 1) асқа жүйенің ресурстарын пайдаланатын программа немесе жүйе; 2) терминал(пернетақта мен экран) арқылы электрондық машинамен бірлесіп әрекет жасайтын адам.

ЕТ даму тарихы Джона фон Нейман жұмысының жарыққа шығуынан бастап есептеледі. Бірінші цифрлік ЕМ құру мүмкіндігі 1936 жылы ағылшын математигі Тьюрингпен дәлелденді. Ол кез келген алгоритм оның дискретті автомат көмегімен өндірілетінін көрсетті. Ол Тьюринг машинасы деп аталды. Бұны Пост (Пост машинасы) та дәлелдеді. Бірінші цифрлік ЕМ 1935 жылы Белл (АҚШ) фирмасымен құрастырылды. Осындай түрдегі машина К. Цунзе (1941, Германия) басшылығымен арнайы есептер үшін құрастырылды. Әмбебап ЭЕМ-ді құру әрекеті Айтнетпен (АҚШ) қарастырылды. Ол "Марк-1" деген атауға ие болды. Гарвард университетінде жобаланып, дайындалды.

Алгоритм, алгорифм (ағылшынша: algorіthm, algorіsmus - Әл-Хорезмидің атынан шыққан) - бастапқы берілген мәліметтермен бір мәнде анықталатын нәтиже алу үшін қай амалды (жұмысты) қандай ретпен орындау қажеттігін белгілейтін есептерді (мәселелерді) шешу (математикалық есеп-қисаптар орындау, техникалық объектілерді жобалау, ғылыми-зерттеу жұмысын жүргізу т.б.)
Гарвард университеті (ағылш. Harvard University) - 1636 жылы Массачусетс штатының Кэмбридж қаласында Массачусетс заңнамасымен қаланған жекеменшік, Айви Лигасына кіретін зерттеуші жоғары оқу орны. Гарвард АҚШ-тағы жоғары оқу орындарының ішіндегі ең көнесі және АҚШ-тағы тұңғыш корпорация (ресми президенті және басқа жұмысшылары тағайындалған).

ЕМ (23 разрядты ондық сандармен жұмыс істеді) сипаттамалары:


  1. Перфолентамен команда бойынша программа енгізілген .
    Команда (command, instruction) - 1) программалау тілдерінде - кез келген операцияны орындауды және оған керекті мәліметтерді (операндыны) бейнелейтін өрнек; компьютер атқаруға тиіс операция сипаты; 2) ақпаратты өңдеу процесіне байланысты атқару құрылғысында жүйенің белгілі бір операцияны орындауын талап ететін басқару сигналы; 3) программа орындау процесінің адымын анықтайтын ұйғарым.


  2. 0,3 секунд ішінде 2 санды қосу

  3. 6 секунд ішінде 2 санды көбейту

  4. 11 секунд ішінде 2 санды бөлу.

Релелік негіз сенімсіз болды. ЭЕМ үшін арнайы релелер құрастырылды. Мұнда "Марк-2" ЕМ құрастырылды.

ЕТ нақты есебі реледен триггерлерге көшумен жүргізіледі. Триггер 1918 жылы Ресейде Бонч-бруевичпен құрастырылды.

Электронды компоненттерде құрастырылған бірінші ЭЕМ-дер 1942 жылы ("Эниак") шықты. Сериялы шығару 1945-1946 жж. болды. Маушли мен Энкер басшылығымен Пенсельван университетінде құрастырылды. 1943 жылы Тьюринг басшылығымен "Колос" ЭЕМ-сы құрастырылды. 70-ші жылдары архивті ашқаннан кейін бірінші ЭЕМ 1939 жылы Германиядан шыққан "АВС" деген атауға ие болған ЭЕМ Антоносовпен құрастырылғаны анықталды. болды.

ЭЕМ-нің бірінші буыны.

ЭЕМ шамдары, өнеркәсіптік шығару 50-ші жылдың басында басталды. Біздің елімізде шығару бастамасы "МЭСМ" 50-ші жылдың басы деп есептеуге болады. Лебедев басшылығымен құрастырылған. 1952-1953 жж. осы негізде Мельников пен Бурцев басшылығымен "БЭСМ-1" (Үлкен электронды есептеу машинасы) құрастырылды.

Есептеу машинасы - күрделі математикалық және қисындық есептерді шешуге арналған есептеу қондырғыларының кешені.
Ал оның негізінде "БЭСМ-2" машинасының сериялы шығарылуы жүргізілді. Осы кезде АҚШ-та "Эдвак" машинасын шығарады. "БЭСМ-2" машинасының техникалық сипаттамасы әлдеқайда жоғары болды. Бұл "БЭСМ-2" машинасында екі жаңа принцип: конвейеризация мен стек пайдалануымен байланысты. "БЭСМ-2" үшін аппараттық-логикалық құрылғылардың жылдам жұмыс істеуі секундына 10000 операцияны құрады.

1953 жылы Василевский басшылығымен "Стрела" машинасы құрастырылды. Сонымен қатар академик Брук басшылығымен Мәскеу Энергетикалық институтында "М" деген атау алған ЭЕМ құрастырылды. Минскте ЭЕМ өндіру бойынша завод құрылды, машиналардың сериялы шығаруы "Минск". Пензе қаласында академик Рамеев басшылығымен конструкторлы бюро бөлімшесі құрылды.

Қала, шаһар - тұрғындары өнеркәсіп, сауда, қызмет көрсету орындарында және ғылыми, мәдени, басқару мекемелерінде жұмыс жасайтын, халқы тығыз орналасқан ірі елді мекен. Әдетте қала Тұрғындар районы, Өнеркәсіп районы, Сауда районы, кейбірінде Әкімшілік басқару районы секілді негізгі райондарға бөлінеді.
Мұнда ЭЕМ құрастырып, сериялы шығаруы "Урал" деп аталды.

Бірінші буынның ЭЕМ-ның құрылымы түгелдей фон Нейман машинасына сәйкес келді. Машиналардың техникалық сипаттамасы қазіргі ДК сипаттамаларына қарағанда төмен болды. Программалау машиналық кодтарда жүргізілді. ЖЕСҚ (ОЗУ) көлемі – 2 мың сөзді құрады. Ақпаратты енгізу перфолента мен кинопленка арқылы жүргізілді.

ЭЕМ-нің екінші буыны.

Шамдардан транзисторлы ЭЕМ-ге көшумен байланыстырады. Транзисторлар жоғарғы сенімділікті, тез жылдамдықты және аз электр қуатын тұтынуын қамтамасыз етуге мүмкіндік берді.

Транзистор (ағылш. transfer - тасымалдау және resistor - кедергіш) - электр тербелістерін күшейтуге, оларды тудыруға және түрлендіруге арналып жартылай өткізгіш кристалл негізінде жасалған электрондық құрал.

Математикалық және программалық қамтаманың дамуы осы кезде басталады. Жоғарғы нүкте: алгоритмдік тілдерді (Fortran, ALGOL) құру. Қарапайым компиляторлар мен интерпретаторлар құрылады. Көппрограммалы ЭЕМ-дер пайда болады. Пакеттік режимде жұмыс істеу үшін бірінші мониторлар мен supervisor'лер шығады. Соның нәтижесінде ЭЕМ-нің екінші буынын пайдалану жылдам ұлғая түседі.



ЭЕМ-нің үшінші буыны.

60-шы жылдардың соңында үшінші буынның бірінші машиналары шыға бастайды. ЭЕМ-нің үшінші буынына көшу күшті сәулеттік өзгерістермен байланысты болады. Техникалық базаның өзгеруі интегралды схематехникаға көшумен байланысты. Бірақ интеграция деңгейі аз болды. Үшінші буынның машиналарында арна концепциясы құрылады, микропрограммалық басқару пайда болады, жады иерархияланады, бірінші рет агрегаттау түсінігі енгізіледі.

МК - мультиплетті арна, СК - селекторлы арна (жоғары жылдамдықты құрылғылар). Арна негізгі құрылымдық элемент болып табылады.

Процессор мен жедел жады құрылымында адрестік механизмдерді (жадыда адресациялауды, программаның тасымалдануын қамтамасыз ететін) ұйымдастыратын арнайы құрылғылар пайда болады.

Механизм (гр. mehane - құрал, мәшине) - бір немесе бірнеше қатты денелерді басқа қатты денелер арқылы қажетті қозғалысқа келтіретін денелер жүйесі. Механизм құрылымдық белгілері бойынша топсалы (иінтіректі), бағдартқышты, тісті, сыналы, бұрамалы, ыңғайландырғыш, арнайы, шыбық қысқыш, иілгіш буынды, гидравликалық, пневматикалық және электрлі құрылғылары бар және т.б.
Процессорда бірнеше арифметикалық-логикалық құрылғылар (АЛҚ) пайда болады. Бұл құрылғылар жұмыс істемейді, бірақ қандайда бір өңдеу жұмысын жүргізу үшін АЛҚ таңдап алынады. Жадыда процессор хабарласатын негізгі жады және көлемі негізгі жады көлемінен әлдеқайда үлкен, бірақ процессорға ол қолайлы массалық жады ерекшеленеді. ЭЕМ-нің үшінші буынының соңында вируталды жадыны басқару концепциясы пайда болады, сыртқы құрылғылар мен терминалды жабдықтар дами бастайды.
Терминал (Terminal) - өзгертулер немесе операторлардың есептеуіш жүйелермен өзара әрекетін қамтамасыз ететін құрылғы; компьютер желілерінде - мәліметтерді жіберуші немесе қабылдаушы болып табылатын құрылғы; пернетақта мен дисплейден тұратын және компьютер (немесе есептеу жүйесімен) ақпарат алмастыру арнасының шетінде орналасқан, әдетте, көп пайдаланушылар жүйесінде қолданылатын енгізу-шығару құрылғысы. Мәлімет өңдеу жүйелерінде және автоматтандырылған басқару жүйелерінде мәлімет енгізу және шығару үшін қолданылады.
Жабдық - бір нәрсеге керек механизмдер, тетіктер, әр түрлі құралғылар жинағы.
Үшінші буынның ЭЕМ-дері модельмен сәйкес келетін сериялармен немесе жанұяларымен шығарыла бастайды.

Математикалық және программалық қамтамасының ары қарай дамуы типтік есептерді шешу үшін пакеттік программаларды құруға әкеледі және бірінші рет программалық кешендер – операциялық жүйелер (IBM құрастырылған) шығарылады.

ЭЕМ-нің төртінші буыны.

70-ші жылдардың соңында бірінші рет ЭЕМ-нің төртінші буыны шыға бастайды. Интеграцияның орташа және үлкен деңгейіндегі интегралды схемаларға көшумен байланысты.

Төртінші буын ЭЕМ-нің құрамы:


  1. Мультипроцессорлық

  2. Параллельді өңдеу

  3. Жоғары деңгейдегі тілдер

  4. ЭЕМ-нің бірінші желілері пайда болады

Төртінші буын ЭЕМ-нің техникалық сипаттамалары:

  1. 0.7 нс./вентильге (вентиль - типтік схема) сигналдың орташа тежелуі

  2. Бірінші рет негізгі жады – жартылайөткізгіштік. Мұндай жадыдан мәліметтерді өңдеу уақыты 100-150 нс.
    Мәліметтер (данные; data) - автоматты құралдардың көмегімен, кей жағдайда адамның қатысуымен, өңдеуге I ыңғайлы түрде берілген мағлұмат. Мәліметтердің кірістік, шығыстық, басқару, проблемалық, сандық, мәтіндік, графикалық және т.б.
    Көлемі 1012 – 1013 символ.

  3. Бірінші рет жедел жүйені аппаратты өндіру пайдаланылады.

  4. Модульдік құрылым программалық әдістер үшін де қолданыла бастады.

Төртінші буын машиналарының негізгі назары сервиске бағытталды (ЭЕМ мен адам арасындағы қатынасты жақсарту).

ЭЕМ-нің бесінші буыны.

80-жылдардың соңында бесінші буын ЭЕМ-рі пайда бола бастады. ЭЕМ-нің бесінші буынының микропроцессорға көшумен байланыстырады.

Бесінші және алтыншы буын үшін жеңілдетілген микропроцессорларда құрылған көппроцессорлы құрылым сәйкес келеді. Жоғары деңгейлі тілдерге негізделген ЭЕМ-дер құрылады.


2 дәріс. ЭЕМ-ді ұйымдастыру негіздері
1   2   3   4   5   6   7   8   9

  • Дәрістің қысқаша мазмұны

  • жүктеу 0.69 Mb.